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                                                          Abstract 

 

 

 

In this paper we explore the long memory properties of the implied volatility series of four 

European countries: France, Germany, UK, Switzerland and the US, by using wavelets analysis. 

The aim of this paper is twofold: first to investigate in the time-frequency domain the effect of 

common and idiosyncratic shocks on the dynamics of implied volatility indexes, second to assess if 

the relative importance of each shock is dependent on the degree of turbulence of the market. To 

this end we divide the sample period into two sub-periods (before and after the Lehman Brothers’ 

collapse) which are characterized by a low and high degree of turbulence respectively.  

The wavelet based maximum likelihood estimator shows that all volatilities are non-stationary long 

memory processes. A Full Information Maximum Likelihood analysis applied jointly to all five 

markets gives evidence of an increasing role played by the common shock (relative to idiosyncratic 

shocks) in shaping the variability of each market, especially after the Lehman Brothers’ collapse 

and for the higher scales (e.g. those associated with lower frequency range). We interpret these 

findings in terms of an increasing role of systemic risk which characterize the period after the 

Lehman Brothers’ collapse and the behavior of investors with long term horizons.     
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1. Introduction  

Evidence of long memory in volatility measures is well documented. The studies of Baillie et al. (1996), 

Andersen and Bollerslev (1997), Comte and Renault (1998) give evidence of long-run dependencies, 

described by a fractionally integrated process, in GARCH, realized volatilies, and stochastic volatilities 

models, respectively. More recently, empirical studies show that the volatility implied from option 

prices exhibits properties well described by fractionally integrated process. In particular, the studies of 

Bandi and Perron (2006) and Christensen, and Nielsen (2006), concentrate on relationship between 

implied and realized volatilies through fractional cointegration (using monthly and weekly data, 

respectively). Moreover, Bollersev et al. (2011) employ a Fractional Integrated Vector Error Correction 

Model to study the relationship between  risk (proxied by the implied volatility) and return using intra-

daily data. All the aforementioned studies focus on the US stock market (hence on the VIX index of 

implied volatility). The only study analyzing spillovers effects across different implied volatility indices 

for the US and for Europe (with emphasis on the role played by news) is the one of Jiang, et al. (2012). 

However, the authors (op. cit.) focus is on the relationship between first differences of implied 

volatilities, and not on the levels.   

The aim of this paper is twofold: first to investigate in the time-frequency domain the effect of common 

and idiosyncratic shocks on the dynamics of implied volatility indexes, second to assess if the relative 

importance of each shock is dependent on the degree of turbulence of the market. To this end we divide 

the sample period into two sub-periods (before and after the Lehman Brothers’ collapse) which are 

characterized by a low and high degree of turbulence respectively.  

In this study we use wavelet based estimators to re-examine the long memory properties in the implied 

volatility series (see Elder and Jin, 2007 and Gencay et al., 2010 on applications of wavelet based 

decomposition of realized volatility) of five countries: France, Germany, UK, US and Switzerland.  
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Wavelets analysis allow to study the time-series in the time-frequency domain. By providing a localized 

frequency decomposition, wavelets are more appropriate than Fourier analysis when the object under 

study is locally stationary and inhomogeneous (Percival and Walden (2000)). Wavelets are particularly 

useful when fractional order of integration lies in a non-stationary region (1/2 < d < 1), as reported for 

volatility series by Kellard et al. (2010) and Bandi and Perron (2006). 

We first, use the Maximum Likelihood wavelet based estimator of the fractional integration parameter 

(see Jensen, 2000) and confirm the findings of Bandi and Perron (2006) regarding the existence of non-

stationary long memory. In a second stage of the analysis, we use Full Information Maximum 

Likelihood to explore the contribution of common and idiosyncratic shocks to the variability of the level 

of each volatility index at different scales (each associated with a given frequency range). For this 

purpose, we exploit the decomposition, at different scales, of the covariance matrix of fractionally 

integrated time series developed by Witcher et al. (2000). The empirical evidence suggests that the 

common shock play a more important role than the idiosyncratic shock, especially for the higher scales 

(e.g. those corresponding to the lowest frequency range) and after the Lehman Brothers’ collapse. 

We contribute to the literature by investigating the different behavior of four European markets and the 

US market, where states with a different currency than the Euro (UK and Switzerlad) are expected to be 

less impacted by the common shocks than Germany and France. We use a factor model where we do not 

need to specify through an autoregressive model the dynamic of the factors, neither of the volatility. 

Differently from Jiang et al. 2012 we work directly on the volatility levels rather than on the first 

differences, which is more interesting from the financial and economic viewpoint, since the 

determinants of the volatility level are linked both to domestic factors such as the level of the economy 

and to international factors such as the international exchanges.  

The structure of the paper is as follows. Section 2 describes the empirical methodology; section 3 

focusses on the empirical evidence and section 4 concludes. 

 

2. Wavelet based univariate and multivariate analysis of long memory series 

2.1 Definition of long memory and traditional estimators 
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Let the implied volatility series, impt , be described by an ARFIMA(p,d,q) process: 

tt
d LimpLL )()1)((            (1) 

where εt is an iid Gaussian process with variance 
2
 . The AR component is given by a polynomial of 

degree p (with roots outside the unit circle): 

p
pLLLL   ...1)( 2

21                       (2) 

and the MA component is described by a polynomial of degree q (with roots outside the unit circle): 

q
qLLLL   ...1)( 2

21           (3) 

The fractional differencing operator (1 – L)d
 can be derived from a power series expansion as follows: 
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It turns out that, for –0.5 < d < 0.5, the process impt is stationary and invertible. For such processes, the 

effect of a shock ε at time t on imp at time t+h decays as h increases, but the rate of decay is much lower 

than for a process integrated of order zero, hence the autocorrelation function for a fractionally 

integrated process decays hyperbolically. If  0.5 < d < 1, then the process is non-stationary long-memory 

and it is characterized by an infinite variance. 

The most prevalent method for estimating the fractional differencing parameter is the method proposed 

by Geweke and Porter-Hudak (1983, hereafter GPH) which is based on the low frequency spectral 

behavior of the time series, exploiting the property that the spectral density of a long memory processes 

is infinite at frequency zero. In practice, the GPH estimator is simply the slope of the sample log 

periodogram: 

)()))2/((sin4ln()(ln 2
sss dcP               (5) 

where P (.) is the periodogram of the data computed at the harmonic frequencies 
T

s
s




2
 , with  

T/2 ,…1,= s  , and T is the sample size. In particular, in line with the study of Bandi and Perron 

(2006), the maximum number of frequencies ω involved in log periodogram regression is set either 
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to T
0.5

, or to T
0.6

, or to T
0.7

. The asymptotic standard error of the parameter d, equal to 
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was obtained by Robinson (1995a) in the presence of stationary data and by Velasco (1999) in the 

presence of non-stationary data with 
4
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The local Whittle estimator developed by Kunsch (1987) and by Robinson (1995b) maximizes a 

frequency-domain Gaussian likelihood for frequencies in the neighborhood of zero, i.e.: 
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The asymptotic standard error of the parameter d has been derived by Robinson (1995b) and it is 

equal to 


1

4

1
.            (7) 

 

 

2.2 Wavelet estimator of long memory parameter 

Frequency domain approaches provide an insightful representation of econometric data by 

decomposing it into sinusoidal components at various frequencies, which have intensities that vary 

across the frequency spectrum. The shortcoming of Fourier analysis is related to the assumption of  

intensities constant through time. This feature makes Fourier methods ineffective in analysing 

signals containing local irregularities, such as spikes or discontinuities, which, we argue, are a 

feature of financial time series. Wavelets can be a particular useful tool when the signal is localized 

in time as well as frequency. Consequently, wavelet transforms can localize a process in time and 

scale, revealing long-run, or high-scale, features of the process in a more flexible manner than the 

Fourier analysis underlying the GPH estimator. Through wavelet analysis (see Appendix for more 

details) we provide a decomposition of a time series into time series components, each reproducing the 

evolution over time of the original series for a given scale λj (associated to a given frequency range). 
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The lower scales are associated to the highest frequency range and the highest scales (up to maximum 

level of decomposition  J) correspond to the lowest frequency range. Two Discrete Wavelet Transform, 

DWT, based estimators of the fractional differencing parameter were introduced by Jensen (1999 and 

2000), and earlier by Wornell and Oppenheim (1992) and McCoy and Walden (1996). The use of DWT 

implies that such a filter can be applied to time series with length equal to 2J. Since we have a sample of 

3264 daily observations for the implied volatility series, we can at most retrieve a decomposition up to 

level J equal to 11. Jensen (1999 and 2000) uses Monte-Carlo analysis to show that the wavelet 

estimators are superior to other long-memory estimators, including the more popular GPH estimator, on 

the basis of MSE. More specifically, Jensen (1999) shows that the wavelet coefficients (for a given scale 

j) associated with a fractionally integrated white noise process, with |d| < 0.5, are distributed 

approximately as N(0, 
)(22 2 jJd 

 ). Consequently, the DWT based wavelet estimator is obtained by 

maximizing the log likelihood function: 

  
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where t1 = 1 and t2 = 2
J-1 

if the focus is on the first scale (e.g. for j = 1), implying that the first 1024 

observations for the wavelet coefficients are employed. Moreover, t1 = 2
J-1

+1 and t2 = 2
J-2

 for j 

equal to 2, that is the second 526 observations for the wavelet coefficients are employed, till we 

reach higher level of decomposition for which the last wavelet coefficients observation is employed. 

The coefficients standard errors are then obtained by inverting the Hessian. 

  

2.3 Wavelet based multivariate analysis 

Once we have investigated the long memory properties of the implied volatility series, we turn our 

focus on multivariate analysis. In particular, we are interested in assessing the contribution of 

common vs. idiosyncratic shocks in shaping the variability of the different market implied 

volatilities for different time horizons. For this purpose, we apply a factor decomposition of the 
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covariance matrix of the implied volatility series at different scales. The analysis is split into two 

stages. 

In the first stage, we apply the Maximal Overlapping Discrete Wavelet Transform, MODWT (see 

Percival and Walden, 2000; Whitcher, 2000) to obtain a decomposition of each time series into 

different scales (each associated to a given frequency range) localized in time (see Appendix for 

more details). Unlike the DWT, the MODWT,  by producing a decomposition of a given time series 

into components having the same size as the original time series, is capable to explore potential 

structural breaks. Beyond full sample analysis, in this paper, we are interested in exploring the 

contribution of common and idiosyncratic shocks before and after the Lehman Brothers’ collapse 

occurred in September 15
th

, 2008.   

In the second stage of the analysis, we employ a factor decomposition of the covariance matrix for 

the implied volatility series across different scales. As shown by Percival and Walden (2000) (see 

also Whitcher, 2000) the wavelet covariance between two fractionally integrated time series X and 

Y (with the orders of integration d1 and d2, respectively) for scale λj (which equal to 2
j-1

) is defined 

as: )( j  and it is given by: 

1 _ _
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where tjW ,

_

 are the wavelet coefficients  of each series, and Nj =N - Lj + 1 and Lj =(2
j
-1)(L-1)+1; L 

stands for the filter length. Given that the order of fractional integration is less than 1, we use, for a 

scale by scale decomposition, short filters such as Haar or a Daubechies filter of length  L equal to 

two and four respectively . This choice is motivated by the requirement, when selecting the wavelet 

coefficients to be included in setting up the log-likelihood function, of avoiding trimming too many 

initial observations for the wavelet coefficients (especially those associated with higher scales) 

affected by the boundary. Trimming is the price to pay when using a relatively long filter which, on 
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the other hand, guarantees to rely on  the Central Limit Theorem, hence on standard asymptotics, 

when drawing inference.  

The factor decomposition of each scale covariance matrix through maximization of the following 

Gaussian log-likelihood function:  

   
  
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jtWL               (10) 

where L(.) is the Gaussian log-density at time t , for scale j and for country i. If the focus is on the 

short-run horizon, then we set j1 to 1 and j2 to 2 when we solve for the maximum likelihood (the 

coefficients standard errors are then obtained by inverting the Hessian). If the focus is on the 

medium-run horizon, then j1 =3 and j2 = 5. Finally,  the focus on the long-run horizon, implies 

setting j1 to 6 and j2 to 7.  The observables entering the log-density are given by jtW
_

, the five 

dimensional vector of wavelets coefficients for the implied volatilities. The unknown coefficients 

enter Г and 
i

j  matrices. More specifically, for each scale j, the country specific unknown 

coefficients are in the diagonal covariance matrix of structural form shocks: 
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      (11) 

 

This implies eight idiosyncratic shocks (and corresponding standard deviation) when the focus is on 

the short run horizon; twelve idiosyncratic shocks (and corresponding standard deviation) when the 

focus is on the medium run horizon; eight idiosyncratic shocks (and corresponding standard 

deviation) when the focus is on the long run horizon. The coefficients of the 51  factor loading 

matrix Γ measure the impact of the white noise common shock on each country implied volatility: 
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We consider the first two scales as those able to capture the short run dynamics of the volatility 

series.  More specifically, since at the j-th stage of the decomposition, one can extract cycles of 

period up to 2
j+1

, and since we use daily data, the time series component at the first scale capture the 

dynamics of a time series over a time horizon between two and four days, whereas the time series 

component at the second scale capture the dynamics of a time series over a time horizon ranging 

between four and eight days. Overall, the focus on the first two scales corresponds to a horizon up 

to eight-days. Moreover, the medium term dynamics of the volatility series is captured by  the time 

series components at scale three, four and five, in order to pick the time series evolution over a time 

horizon ranging between eight and sixty-four days. Finally, the time series components at scale six 

and seven, describing the time series evolution over a time horizon ranging between sixty-four days 

and two hundred and fifty six days, would be able to capture the long term dynamics of the 

volatility series.  

 

3. Data and empirical evidence 

The data-set is made of five implied volatility indexes/series for France (VCAC), Germany 

(VDAX), UK (VFTSE), US (VIX) and Switzerland (VSMI), observed at daily frequency from 

4/1/2000 till 6/7/2012.  Descriptive statistics are reported in Table 1. The implied volatility 

indexes/series represent a measure of market expectations of near-term volatility conveyed by the 

underlying stock index option prices. They are deemed by market participants to capture the so-

called “market fear”: high index values are associated with high uncertainty in the underlying 

market, low index values with stable conditions. 



 

10 

 

We report the GPH and Local Whittle estimates of the long memory parameter using both the full 

sample of 3264 observations and the sample with only the last 2
11

 = 2048 observations. The choice 

of this sub-sample is motivated by comparison of the traditional estimators of d with the Discrete 

Wavelet based estimator developed by Jensen (1999; 2000). From Table 2, 3, and 4 there is 

evidence of long memory non stationarity in all five series. Moreover, the Maximum Likelihood 

wavelet based estimate of the fractional integration parameter d is lower than the one obtained from 

the GPH and local Whittle estimator. We are also aware of the possibility of structural breaks 

affecting the long memory parameter estimator and we leave this issue to be investigated with 

further research.  

We now turn our focus on the multivariate analysis. From Table 5, 6, and 7 we can observe that all 

the coefficients are statistically significant, and, in particular, there is a pronounced increase in the 

common shock factor loading once we move from lower to higher scales. To ease the interpretation 

of the empirical results provided in Table 5, 6 and 7, we compute the ratio σ/γ (see Table 8, 9 and 

10). The numerator and denominator of this ratio are (see Table 5, 6 and 7) the estimated factor 

loading of the idiosyncratic shock (e.g. one of the coefficient entering the main diagonal of the 

covariance matrix a
j
i  in eq. 11) and the factor loading of the common shock (e.g. one of the 

component of the column vector Γ in eq. 12), respectively. This ratio measures the contribution of 

the idiosyncratic shock relative to the common shock  in explaining the dynamics of each implied 

volatility series. From the full sample (and, especially, from the post-break sub-sample) factor 

decomposition of the covariance matrix for the five markets we can observe that the common shock 

contributes the most to the variability of each implied volatility series across different scales. 

Moreover, the higher the scale (e.g. the lower the frequency range), the more important is the role 

played by the common shock.  From Table 10, we can observe that, after the Lehman’s collapse, at 

scale 7 (e.g. the highest frequency range considered), the common shock contributes to 80% of the 

variability of the German and Swiss implied volatility index,  to 85% of the variability of the French 
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and US implied volatility index, and to 95% of the UK implied volatility dynamics. These empirical 

findings can be interpreted in terms of the dominance of systemic risk over time horizons reflecting 

the behavior of short-term investors (whose time horizon is associated with lower scales, e.g. those 

related to higher frequency ranges) and, especially, the trading strategies of long term investors 

(whose time horizon is related to the higher scales, e.g. those associated with lower frequency 

ranges). Furthermore, the post-Lehman’s collapse regime is the one mostly characterized by the 

dominance of systemic risk.  

As for the US implied volatility series, the contribution of the idiosyncratic shock is more important 

than the one related to the common shock over the first two scales. We can observe that the 

importance of the idiosyncratic shock to the VIX index dynamics decreases after the Lehman 

Brothers’ collapse. In particular, from Table 8 we can observe that, as far as the first scale is 

concerned,  the  switch from the pre- to the post-Lehman’s collapse implies a decrease of σ/γ, from 

1.24 to 1.15 and, from 1.42 to 1.29, according to the Haar and LA4 filters, respectively. The 

decrease of σ/γ is more pronounced for the second scale (see Table 8), given a reduction from 1.31 

to 1.01 and, from 1.57 to 1.14, according to the Haar and LA4 filters, respectively. As for the 

medium term horizon, that is, for scales 3, 4 and 5 (see Table 9), the full sample analysis shows 

approximately a contribution of the idiosyncratic shocks to the VIX index dynamics equal to the 

one associated to the common shock. More specifically, while the full sample estimate of σ/γ (using 

the Haar filter) is equal to 0.48, 0.45 and 0.50 for scale 3, 4 and 5, respectively, the LA4 filter 

produces an estimate of σ/γ equal to 0.57, 0.51 and 0.55 for scale 3, 4 and 5, respectively. The sub-

sample estimates of σ/γ (using the Haar filter) show a decrease of this ratio from 0.59 to 0.42 over 

the third scale. This decrease is more pronounced for the fourth and fifth scales, since there is a 

switch from 0.57 to 0.36 and from 0.60 to 0.36, respectively. This finding is confirmed by the LA4 

filter. In particular, while there is a shift in σ/γ for the fourth and fifth scales (from 0.65 to 0.42 and 

from 0.64 to 0.43, respectively), the ratio σ/γ is estimated to diminish from 0.69 to 0.52 over the 



 

12 

 

third scale. A further decrease in the contribution of the idiosyncratic shocks relative to the common 

shock is recorded for a long term horizon, that is for scale 6 and 7 (see Table 10). 

Switzerland and UK display a similar pattern. For both countries the contribution of the 

idyosincratic shock raises from the pre-break to the post-break sub-sample period (if the focus is on 

the first five scales, as we can observe from Table 8 and 9). However, the ratio σ/γ  is well below 

unity for both sub-sample periods. In particular for UK, as for the first scale (see Table 8), 

according to the Haar filter, 0.56 and 0.74 are the values of this ratio for the pre- and post-break, 

respectively; 0.65 and 0.83 are the corresponding values if we use the LA4 filter. As for the second 

scale (see Table 8), according to the Haar filter, 0.49 and 0.68 are the values of this ratio for the pre-

and post-break, respectively; 0.56 and 0.78 are the corresponding values if we use the LA4 filter. 

We find the same pattern for scales 3-4.  Once we move to the scale 6 and 7 (see Table 10), we can 

observe that, after the Lehman’s collapse, there is a decrease in the role played by the idiosyncratic 

shock in explaining implied volatility in UK and Switzerlad. More specifically, the common shock 

nearly contributes to 90 and 95%, of the variability of UK implied volatility series , at scale 6 and 7, 

respectively and to 80-85% of the variability of Swiss implied volatility.  

France is the only European country where the idiosyncratic shock is more important than the 

common shock when the focus is on the first two scales and we consider the pre-Lehman’s collapse 

sub-sample (see Table 8).  However, once we observe a switch to the post-Lehman’s collapse 

regime, we observe an increased contribution from the common shock across different scales (see 

Tables 9 and 10).  

For France, from the pre-break to the post-Lehman’s collapse, we find a decrease of the importance 

of the idiosyncratic shock for all the scales. The same happens for Germany for the first five scales 

(Tables 8 and 9). However, for scales 6 and 7 we observe for Germany an inversion of the 

tendency: a decrease of the importance of the common shock.  
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In the short run implied volatility indexes are driven by idiosyncratic components more than in the 

long run, when effects of market frictions disappear. In fact traders react to changes in implied 

volatility of other markets in the short run more than in the long run, thus causing artificial noise 

which vanishes in the long run. Overall, the empirical evidence suggest that systemic risk 

contributes the most in explaining the trading strategies of various class of investors, particularly 

those with long term view, especially after the Lehman Brothers’ collapse. 

 

 

4. Conclusions 

In this paper we explore the long memory properties of five implied volatility indices. While 

previous fractional integration studies of implied volatility focus only on the US markets, we also 

consider the implied volatility indices of four European markets: France, Germany, UK and 

Switzerland. Our main contribution to previous studies of long memory properties of implied 

volatility relies on the use of univariate and multivariate wavelet based Full Information Maximum 

Likelihood analysis.  The univariate analysis employs, beyond the GPH and the local Whittle 

estimator, the wavelet based maximum likelihood estimator (developed by Jensen, 2000) of the 

fractional integration parameter. This estimator produces estimates of the long memory parameter d 

lower than those of GPH and of the local Whittle estimator, but still lying in the non-stationary 

region (e.g. 0.5 < d < 1).  When we employ multivariate analysis, we concentrate on a factor 

decomposition of the covariance matrix of the implied volatility series at different scales (each 

associated to a given frequency range), to assess the role played by common shock vs. idiosyncratic 

shocks in explaining the variability of each volatility index at different scales. The empirical 

evidence points at an increasing role of the common shock (hence, of systemic risk) underlying the 

dynamics of the different series, especially, for the higher scales (associated with low frequency 

ranges) and after the collapse of Lehman Brothers. 
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Table 1: Descriptive Statistics 

Country Mean Std Dev     Minimum Maximum 

FRA 24.69 9.60 9.24 78.05 

GER 23.79 9.28 10.98 74.00 

UK 21.79 9.15 9.09 75.54 

US 22.16 9.28 9.89 80.86 

SWI 20.44 8.95 9.23 84.89 

 

 

Table 2: GPH estimates of parameter d (Full sample) 

FRA GER UK US SWI 

                                  m = T
0.5

 

0,689    

(0,084) 

0,784 

(0,084) 

0,602 

(0,084) 

0,735 

(0,084) 

0,661 

(0,084) 

                                  m = T
0.6

 

0,900 

(0,056) 

0,949 

(0,056) 

0,848 

(0,056) 

0,960 

(0,056) 

0,893 

(0,056) 

                                  m = T
0.7

 

0,841 

(0,002) 

0,891 

(0,002) 

0,856 

(0,002) 

0,868 

(0,002) 

0,926 

(0,002) 
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Table 2´: GPH estimates of parameter d (sub-sample T1 = 2
^11

; last 

2048 observations) 

FRA GER UK US SWI 

                                  m = T1
0.5

 

0,889    

(0,095) 

0,905 

(0,095) 

0,892 

(0,095) 

0,993 

(0,095) 

0,892 

(0,095) 

                                  m = T1
0.6

 

0,826 

(0,065) 

0,876 

(0,065) 

0,828 

(0,065) 

1,015 

(0,065) 

0,893 

(0,065) 

                                  m = T1
0.7

 

0,833 

(0,044) 

0,788 

(0,044) 

0,890 

(0,044) 

0,905 

(0,044) 

0,926 

(0,044) 

 

Table 3: Whittle estimates of parameter d (Full sample) 

FRA GER UK US SWI 

                                               m =T
0.5

 

0,764 

(0.066) 

0,804 

(0.066) 

0,708 

(0.066) 

0,775 

(0.066) 

0,755 

(0.066) 

                                              m =T
0.6

 

0,889 

(0.044) 

0,925 

(0.044) 

0,884 

(0.044) 

0,972 

(0.044) 

0,950 

(0.044) 

                                             m =T
0.7

 

0,830 

(0.029) 

0,879 

(0.029) 

0,843 

(0.029) 

0,863 

(0.029) 

0,935 

(0.029) 

 

Table 3´: Whittle estimates of parameter d (sub-sample T1 = 2
^11

; 

 last2048 observations)
 

FRA GER UK US SWI 

                                               m =T1
0.5

 

0,854 

(0.074) 

0,928 

(0.074) 

0,855 

(0.074) 

0,951 

(0.074) 

0,881 

(0.074) 

                                              m =T1
0.6

 

0,819 

(0.050) 

0,928 

(0.050) 

0,829 

(0.050) 

0,992 

(0.050) 

0,894 

(0.050) 

                                             m =T1
0.7

 

0,815 

(0.034) 

0,840 

(0.034) 

0,833 

(0.034) 

0,875 

(0.034) 

0,897 

(0.034) 
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Table 4: ML wavelet based estimates of parameter d (sample  

T1 = 2
^11

; last 2048 observations) 

FRA GER UK US SWI 

                                            HAAR filter 

0.741      

(0.015) 

0.795      

(0.014)  

            

0.782      

(0.014)   

0.765      

(0.014) 

            

0.843     

 (0.014)  

 

 

                                           LA4 filter 

0.758 

(0.014) 

0.824 

(0.014) 

0.774 

(0.014) 

0.754 

(0.014) 

0.852 

(0.014) 

     

  

  

 

 

Table 5: Factor decomposition of scale 1 and 2 covariance matrices 

 for the implied volatilities time series           
                                                      HAAR       filter                                                             LA4  filter 

Parameter Full 

sample 

Pre-

break 

Post-

break 

Full 

sample 

Pre-

break 

Post-

break 

σFRA,1  0.620           

(0.009) 

   0.645           

(0.016) 

0.855           

(0.023) 

0.585           

(0.009) 

0.589           

(0.014) 

0.822           

(0.023) 

σGER,1  0.380           

(0.007) 

   0.401           

(0.013) 

0.526           

(0.017) 

 0.368           

(0.007) 

0.370           

(0.012) 

0.522           

(0.017) 

σUK,1   0.513           

(0.008) 

   0.454           

(0.014) 

0.751           

(0.021) 

 0.491           

(0.008) 

0.440           

(0.014) 

0.720           

(0.020) 

σUS,1   0.738           

(0.010) 

   0.600           

(0.014) 

1.054           

(0.025) 

 0.709           

(0.009) 

0.552           

(0.013) 

1.020           

(0.024) 

σSWI,1   0.379           

(0.006) 

   0.331           

(0.011) 

 0.532           

(0.016) 

 0.347           

(0.006) 

0.315           

(0.010) 

0.481           

(0.015) 

σFRA,2  0.608           

(0.009) 

   0.697           

(0.017) 

 0.810           

(0.022) 

 0.587           

(0.008) 

0.648           

(0.016) 

0.810           

(0.022) 

σGER,2   0.326           

(0.007) 

   0.411           

(0.013) 

 0.394           

(0.017) 

 0.306           

(0.007) 

0.389           

(0.012) 

0.376           

(0.017) 

σUK,2   0.478           

(0.008) 

   0.397           

(0.014) 

 0.690           

(0.019) 

 0.463           

(0.007) 

0.383           

(0.014) 

0.673           

(0.018) 

σUS,2   0.676           

(0.009) 

   0.635           

(0.015) 

 0.927           

(0.022) 

 0.654           

(0.009) 

 0.612           

(0.015) 

0.900           

(0.022) 

σSWI,2    0.397           

(0.006) 

   0.337           

(0.011) 

 0.561           

(0.016) 

0.375           

(0.006) 

 0.306           

(0.010) 

0.536           

(0.016) 

γFRA    0.801           

(0.011) 

   0.583           

(0.018) 

 1.174           

(0.027) 

 0.700           

(0.010) 

0.477           

(0.017) 

1.040           

(0.026) 

γGER    0.718           

(0.008) 

  0.679           

(0.015) 

 0.979           

(0.019) 

0.622           

(0.007) 

0.568           

(0.013) 

0.858           

(0.017) 

γUK  0.776           

(0.009) 

   0.814           

(0.016) 

 1.012           

(0.023) 

 0.662           

(0.009) 

0.682           

(0.015) 

0.865           

(0.022) 

γUS    0.610           

(0.011) 

  0.485           

(0.017) 

  0.920           

(0.027) 

 0.512           

(0.010) 

0.390           

(0.015) 

0.789           

(0.025) 

γSWI    0.647           

(0.008) 

   0.610           

(0.013) 

  0.908           

(0.020) 

 0.539           

(0.007) 

0.486           

(0.011) 

0.770           

(0.018) 

Note: Standard error in parenthesis. The pre-break sample period runs from 4/1/2000 

until 12/9/2012. The post-break sample period runs from 15/9/2012 until 6/7/2012 
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Table 6: Factor decomposition of scale 3. 4 and 5 covariance matrices 

for the implied volatilities time series 

parameter HAAR filter LA4 filter 
σFRA,3 0.606           

(0.009) 

0.792           

(0.019) 

0.686           

(0.020) 

0.606           

(0.009) 

0.780           

(0.019) 

0 .683           

(0.021) 

σGER,3 0.348           

(0.007) 

0.430           

(0.013) 

0.428           

(0.017) 

0.323           

(0.007) 

0.406           

(0.012) 

 0.426           

(0.018) 

σUK,3 0.465           

(0.008) 

0.381           

(0.014) 

0.638           

(0.020) 

 0.466           

(0.008) 

0.354           

(0.014) 

 0.642           

(0.020) 

σUS,3 0.650           

(0.009) 

0.668           

(0.016) 

0.852           

(0.022) 

0.653           

(0.009) 

0.673           

(0.016) 

0.857           

(0.023) 

σSWI,3 0.436           

(0.007) 

0.374           

(0.012) 

0.636           

(0.019) 

0.406           

(0.007) 

0.316           

(0.011) 

   0.620           

(0.020) 

σFRA,4 0.599           

(0.009) 

0.855           

(0.021) 

0.598           

(0.018) 

0.603           

(0.009) 

0.875           

(0.021) 

0.577           

(0.017) 

σGER,4 0.394           

(0.007) 

0.494           

(0.015) 

0.415           

(0.014) 

0.369           

(0.007) 

0.515           

(0.015) 

 0.352           

(0.013) 

σUK,4 0.430           

(0.008) 

0.397           

(0.017) 

0.523           

(0.017) 

0.432           

(0.008) 

0.362           

(0.018) 

 0.548           

(0.017) 

σUS,4 0.611           

(0.008) 

0.645           

(0.016) 

0.726           

(0.019) 

0.577           

(0.008) 

0.634           

(0.016) 

0.692           

(0.018) 

σSWI,4 0.482           

(0.007) 

0.497           

(0.014) 

0.654           

(0.017) 

0.470           

(0.007) 

0.455           

(0.013) 

0.642           

(0.017) 

σFRA,5 0.574           

(0.009) 

0.807           

(0.021) 

0.592           

(0.017) 

0.592           

(0.009) 

0.870           

(0.023) 

0.606           

(0.017) 

σGER,5 0.470           

(0.008) 

0.490           

(0.017) 

0.575           

(0.016) 

0.444           

(0.007) 

0.527           

(0.018) 

0.534           

(0.015) 

σUK,5 0.427           

(0.008) 

0.451           

(0.019) 

0.427           

(0.016) 

0.410           

(0.008) 

0.367           

(0.023) 

0.438           

(0.016) 

σUS,5 0.670           

(0.009) 

0.677           

(0.017) 

0.727           

(0.020) 

0.624           

(0.009) 

0.629           

(0.016) 

0.710           

(0.019) 

σSWI,5 0.545           

(0.008) 

0.633           

(0.017) 

0.710           

(0.019) 

0.509           

(0.008) 

0.633           

(0.017) 

0.626           

(0.017) 

γFRA 1.536           

(0.013) 

1.470           

(0.025) 

2.078           

(0.029) 

1.358           

(0.012) 

1.252           

(0.024) 

1.829           

(0.026) 

γGER 1.379           

(0.011) 

1.489           

(0.021) 

1.773           

(0.025) 

1.208           

(0.010) 

1.309           

(0.020) 

1.499           

(0.021) 

γUK 1.574           

(0.012) 

1.729           

(0.024) 

2.034           

(0.028) 

1.396           

(0.011) 

1.561           

(0.022) 

1.765           

(0.025) 

γUS 1.350           

(0.012) 

1.135           

(0.019) 

2.024           

(0.030) 

1.141           

(0.010) 

 0.982           

(0.018) 

1.647           

(0.026) 

γSWI 1.428           

(0.011) 

1.485           

(0.022) 

1.885           

(0.028) 

1.224           

(0.010) 

1.256           

(0.019) 

1.587           

(0.024) 

Note: Standard error in parenthesis. The pre-break sample period runs from 4/1/2000 

until 12/9/2012. The post-break sample period runs from 15/9/2012 until 6/7/2012 
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Table 7: Factor decomposition of scale 6 and 7 covariance matrices 

for the implied volatilities time series 

Parameter HAAR       filter                                                            
  

LA4  filter 

 Full 

sample 

Pre-

break 

Post-

break 

Full 

sample 

Pre- 

break 

Post-

break 

σFRA,6    0.535           

(0.009) 

 0.708           

(0.020) 

0.528           

(0.015) 

0.530           

(0.009) 

0.766           

(0.023) 

0.499           

(0.015) 

σGER,6  0.563           

(0.009) 

 0.496           

(0.017) 

 0.689           

(0.018) 

0.515           

(0.008) 

0.419           

(0.017) 

0.648           

(0.017) 

σUK,6    0.449           

(0.009) 

0.578           

(0.019) 

 0.338           

(0.016) 

0.454           

(0.009) 

0.548           

(0.021) 

0.376           

(0.016) 

σUS,6    0.793           

(0.011) 

0.842           

(0.021) 

0.744           

(0.020) 

0.698           

(0.010) 

0.681           

(0.019) 

0.739           

(0.020) 

σSWI,6    0.611           

(0.009) 

 0.636           

(0.019) 

0.840           

(0.021) 

0.600           

(0.009) 

0.743           

(0.023) 

0.826           

(0.021) 

σFRA,7    0.522           

(0.010) 

0.696           

(0.022) 

0.578           

(0.017) 

0.460           

(0.009) 

0.668           

(0.026) 

0.476           

(0.013) 

σGER,7    0.705           

(0.011) 

0.647           

(0.020) 

0.831           

(0.022) 

0.634           

(0.010) 

0.574           

(0.022) 

0.700           

(0.017) 

σUK,7    0.413           

(0.010) 

0.569           

(0.022) 

0.142           

(0.033) 

0.420           

(0.009) 

0.547           

(0.025) 

0.203           

(0.015) 

σUS,7    0.953           

(0.013) 

0.897           

(0.024) 

0.634           

(0.021) 

0.870           

(0.013) 

0.724           

(0.024) 

0.623           

(0.016) 

σSWI,7    0.644           

(0.010) 

0.646           

(0.021) 

0.739           

(0.020) 

0.572           

(0.009) 

0.735           

(0.027) 

0.627           

(0.015) 

γFRA    2.989           

(0.027) 

 3.333           

(0.058) 

3.982           

(0.064) 

2.887           

(0.027) 

3.401           

(0.067) 

3.781           

(0.061) 

γGER    2.765           

(0.026) 

 3.160           

(0.055) 

3.654           

(0.061) 

2.628           

(0.025) 

3.085           

(0.060) 

3.444           

(0.057) 

γUK    2.955           

(0.027) 

 3.345           

(0.057) 

3.927           

(0.063) 

2.881           

(0.027) 

3.465           

(0.067) 

3.753           

(0.060) 

γUS  2.855           

(0.028) 

 2.388           

(0.045) 

4.520           

(0.073) 

2.781           

(0.028) 

2.563           

(0.052) 

4.238           

(0.069) 

γSWI 2.971           

(0.028) 

 3.416           

(0.059) 

 3.956           

(0.065) 

2.935           

(0.028) 

3.567           

(0.070) 

3.866           

(0.063) 

Note: Standard error in parenthesis. The pre-break sample period runs from 4/1/2000 

until 12/9/2012. The post-break sample period runs from 15/9/2012 until 6/7/2012 
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Table 8: Factor decomposition of scale 1 and 2 covariance matrices 

for the implied volatilities time series: σ/γ 

HAAR filter LA4 filter parameter 

Full 

sample 

Pre-

break 

Post-

break 

Full 

sample 

Pre- 

break 

Post-

break 

 

0.77 1.11 0.73 0.84 1.23 0.79 σFRA,1/γFRA,1 

0.53 0.59 0.54 0.59 0.65 0.61 σGER,1/γGER,1 

0.66 0.56 0.74 0.74 0.65 0.83 σUK,1/γUK,1 

1.21 1.24 1.15 1.38 1.42 1.29 σUS,1/γUS,1 

0.59 0.54 0.59 0.64 0.65 0.62 σSWI,1/γSWI,1 

0.76 1.20 0.69 0.84 1.36 0.78 σFRA,2/γFRA,2 

0.45 0.61 0.40 0.49 0.68 0.44 σGER,2/γGER,2 

0.62 0.49 0.68 0.70 0.56 0.78 σUK,2/γUK,2 

1.11 1.31 1.01 1.28 1.57 1.14 σUS,2/γUS,2 

0.61 0.55 0.62 0.70 0.63 0.70 σSWI,2/γSWI,2 

Note: The pre-break sample period runs from 4/1/2000 until 12/9/2012.  

The post-break sample period runs from 15/9/2012 until 6/7/2012 

 

Table 9: Factor decomposition of scale 3, 4 and 5 covariance matrices 

for the implied volatilities time series: σ/γ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: The pre-break sample period runs from 4/1/2000 until 12/9/2012.  

The post-break sample period runs from 15/9/2012 until 6/7/2012 

 

Table 10: Factor decomposition of scale 6 and 7 covariance matrices 

for the implied volatilities time series: σ/γ 

HAAR filter LA4 filter parameter 

Full 

sample 

Pre-

break 

Post-

break 

Full 

sample 

Pre- 

break 

Post-

break 

 

0.18 0.21 0.13 0.18 0.23 0.13 σFRA,6/γFRA,6 

0.2 0.16 0.19 0.20 0.14 0.19 σGER,6/γGER,6 

0.15 0.17 0.09 0.16 0.16 0.10 σUK,6/γUK,61 

0.28 0.35 0.16 0.27 0.22 0.21 σUS,6/γUS,6 

0.21 0.19 0.21 0.21 0.21 0.22 σSWI,6/γSWI,6 

0.17 0.21 0.15 0.16 0.20 0.13 σFRA,7/γFRA,7 

0.25 0.20 0.23 0.24 0.19 0.20 σGER,7/γGER,7 

0.14 0.17 0.04 0.15 0.16 0.05 σUK,7/γUK,7 

0.33 0.38 0.14 0.33 0.24 0.18 σUS,7/γUS,7 

0.22 0.19 0.19 0.20 0.21 0.17 σSWI,7/γSWI,7 

Note: The pre-break sample period runs from 4/1/2000 until 12/9/2012.  

The post-break sample period runs from 15/9/2012 until 6/7/2012 

HAAR filter LA4 filter Parameter 

Full 

sample 

Pre-

break 

Post-

break 

Full 

sample 

Pre- 

break 

Post-

break 

 

0.39 0.54 0.33 0.45 0.62 0.37 σFRA,3/γFRA,3 

0.25 0.29 0.24 0.27 0.31 0.28 σGER,3/γGER,3 

0.30 0.22 0.31 0.33 0.23 0.36 σUK,3/γUK,3 

0.48 0.59 0.42 0.57 0.69 0.52 σUS,3/γUS,3 

0.31 0.25 0.34 0.33 0.25 0.39 σSWI,3/γSWI,3 

0.39 0.58 0.29 0.44 0.70 0.32 σFRA,4/γFRA,4 

0.29 0.33 0.23 0.31 0.39 0.23 σGER,4/γGER,4 

0.27 0.23 0.26 0.31 0.23 0.31 σUK,4/γUK,4 

0.45 0.57 0.36 0.51 0.65 0.42 σUS,4/γUS,4 

0.34 0.33 0.35 0.38 0.36 0.40 σSWI,4/γSWI,4 

0.37 0.55 0.28 0.44 0.69 0.33 σFRA,5/γFRA,5 

0.34 0.33 0.32 0.37 0.40 0.36 σGER,5/γGER,5 

0.27 0.26 0.21 0.29 0.24 0.25 σUK,5/γUK,5 

0.5 0.60 0.36 0.55 0.64 0.43 σUS,5/γUS,5 

0.38 0.43 0.38 0.42 0.50 0.39 σSWI,5/γSWI,5 
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Appendix 

 

Wavelets can be a particular useful tool when the signal is localized in time as well as frequency. 

Discontinuities in signals can be described in terms of very short (compressed) basis functions with 

a high-frequency content, whereas a fine analysis at low frequencies can be achieved using highly 

dilated (stretched) basis functions. In other words, the wavelet is contracted or dilated to change the 

scale at which one looks at a signal. The wavelet is then shifted or translated in time to correspond 

to different part of the signal. The procedure is called  multiresolution analysis. In particular, in case 

of a dyadic multiresolution analysis, the dilated and translated family of wavelets functions can be 

defined as
1
: 

 

Ikjktt jj
kj   ,);2(2)( 2/

,       (A1) 

 

Where j  and k are the integer parameters governing the scale resolution (i.e. 2
-j
) and translation in 

time, respectively.  

All the wavelet basis functions, ψj,k, are self-similar, namely, they differ only by translation and 

change of scale from one another. These functions result from a mother wavelet, ψ(t), which is any 

oscillating function with unit energy, i.e.: 
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The object of a wavelet analysis is to associate an amplitude coefficient to each of the wavelet. The 

task is accomplished by the Discrete Wavelet Transform which is implemented via the pyramid 

algorithm of Mallat (1987). If certain conditions are satisfied, these coefficients completely 

characterize the signal which is resolved in terms of a coarse approximation and the sum of fine 

details: 

 

 

 
k j k

kjkjkJkJ wtvtx ,,,, )()(          (A3) 

       

 

Here J is the highest possible level of decomposition; kJ ,  is the set of  translated orthogonal 

scaling functions spanning the lower frequency range [0, π/2
(J)

). Therefore, the first term 


k

kJkJ tv )(,,   in (A3)   is the coarse approximation of the signal, and   the second term 
j k

kjkjw ,,   

in A(3) is the sum of fine details.  

                                                 
1
 Given a time series with T observations, conventional dyadic multiresolution analysis applies to a succession of 

frequency intervals in the form of (π/2
(j)

, π/2
(j-1)

), with the decomposition level  j running from 1 to J. The bandwidths 

are halved (downsampled by 2) repeatedly descending from high to low frequencies. By the j
th

 round, there will be j 

wavelet bands and one accompanying scaling function band . At the decomposition level j, one obtains a set of T/2
j
 

mutually orthogonal wavelets functions  given by equation (A.1), separated from each other by 2
j
 points. 
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The scaling and wavelet coefficients kjv ,  and kjw ,  are the following projections of x(t) on the bases 

kj,  and kj,  respectively: 

 

 dtttxv kjkj )()( ,,         (A4) 

 

 dtttxw kjkj )()( ,,         (A5) 

 

The signal can then be written as a set of orthogonal components at resolutions 1 to J: 

 

 

11 ......)( DDDStx JJJ         (A6) 

 

 

An important feature of a wavelet analysis consists in the fact that it is an energy-preserving 

transform; as a consequence, the variance of the signal is perfectly captured by the variance of the 

wavelet coefficients, w. In other words, the  overall variance of the data can be expressed as a sum 

of the variances within the frequency bands, which may be indexed by j: 

 



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j
j         (A7) 

 

where 2
j   is the contribution of the variability at scale 2

-j
  to the overall variability of the process: 
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Similarly, as shown by Whitcher (1998) and by Whitcher et al. (2000), the wavelet covariance 

decomposes the covariance between two stochastic processes on a scale-by-scale basis. For a 

bivariate stochastic process  ),( ,2,1 ttt xxX  , there will be: 
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where 

 

),(
2

1
)( ,,2,,1 tjtjjx wwCovjCov        (A10) 

 

A disadvantage of the conventional dyadic wavelet analysis is the restriction on the sample size T 

which has to be a power of  2. A further problem lies in the fact that the DWT depends upon a non-

symmetric filter that is liable to induce a phase lag in the processed data. These difficulties can be 

circumvented by the Maximum Overlapping Discrete Wavelet Transform (MODWT), which 

represents an attempt to generate a transform that is not sensitive to the choice of the starting point 

for the data series. In order to avoid such sensitivity, the filtered output at each stage of the pyramid 

algorithm is not subjected to downsampling. As a consequence, the number of coefficients 
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generated at the j-th stage of the decomposition are in number equal to the sample size, T, instead 

that equal to T/2
j
. An important feature of the MODWT is that, besides handling any sample size, 

the detail and smooth coefficients of the multiresolution analysis are associated with linear phase 

filters. The consequence is that it is possible to align the features of the original time series with 

those of the multiresolution analysis. 

 

The DWT, as well as its variants, the Partial DWT and the MODWT, makes use of circular 

filtering. The series under investigation is treated as if it is a portion of a periodic sequence with 

period N. In other words, the transform considers xN-1, xN-2…. as useful surrogates for the 

unobserved x-1 , x-2 …. . This can be a questionable assumption for some time series. The effects of 

this assumption, and solutions to the problems created, are fully explored in Percival and Walden  

(2000). A problem with the periodic extension can occur when there is a large discontinuity 

between the end of one replication of the sample and the beginning of the next. In such cases the 

coefficients produced by the transform result remarkably high and the reconstructed details are 

affected. To reduce this problem the data should be suitably de-trended. The aforementioned 

criticism related to filter circularity would not apply to financial time series. 
 

 

 


